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In a period spanning less than a decade, deep learning 
with Convolutional Neural Networks (CNNs) has become 
the standard for Artificial Intelligence (AI) applications. 
While most of the key concepts were introduced decades 
ago, the two driving forces behind its success have only 
started building momentum at the dawn of this century: 
(I) an exponential increase in computational power and 
(II) the growing availability of large sets of labeled data. 
These two developments reached critical mass first in 
speech recognition (1), and later in computer vision, with 
the introduction of AlexNet (2): the first deep learning 
architecture to win the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) (3). 

Ever since these first breakthroughs, the graphical 
processing units (GPUs) required for deep learning have 
been dropping in price and increasing in power, rendering 
the availability of data the limiting factor for deep learning. 
Especially in the medical domain, this is hampering the 
progress of AI, as medical data is hard to acquire and 
expensive to label. Moreover, additional challenges arise 
when building medical datasets, such as patient privacy, data 
uniformity over different medical centers and a considerable 
inter-observer variability among different medical experts, 
who provide the ground truth for training AI algorithms. 
Finally, data ownership is a rising topic of interest now that 
the first AI algorithms hit the market and start yielding 
commercial profit, while their development is completely 
fueled by patient data.

To deal with the scarcity of high-quality, labeled datasets, 
transfer learning has been first explored as an interesting 
solution for CNNs by Oquab et al. (4), and in 2016 some 
early successes in the medical domain were reported by 
Shin et al. (5) and Tajbakhsh et al. (6). This technique 
effectively alleviates the need for large, task-specific datasets 
to train deep neural networks by introducing a so-called 

pretraining stage, in which the network is trained on a 
large dataset from a different domain (for example natural 
images), for which an abundance of data is available. Then, 
during a second training stage, the target data (for example 
endoscopic images of neoplastic lesions) are used to fine-
tune the model to the task at hand. In this fashion, the 
knowledge (i.e., network weights) that the network has 
learned from the large dataset is transferred to a different 
domain. The success behind this approach can be explained 
by the observation that a lot of visual features are useful 
for a variety of different image types. For example, visual 
features such as color/intensity transitions, edges, lines and 
basic shapes appear in both natural images (e.g., birds, cars 
and buildings) and in e.g., ophthalmology scans or stained 
histology slides. Moreover, the depth of the employed 
neural networks facilitates complex hierarchical patterns 
that are useful for a broad variety of tasks.

For the abovementioned reasons, nearly all methods 
proposed for AI-based medical image analysis exploit a 
form of transfer learning. To this end, ImageNet is by 
far the most popular dataset for pretraining purposes and 
it is used for a wide variety of tasks: from classification 
of pulmonary tuberculosis in chest radiography (7) to 
whole-slide pathology image analysis to detect of lymph 
node metastases in women with breast cancer (8). Also in 
endoscopy, ImageNet pretraining is used ubiquitously: for 
polyp localization (9) and staging (10), classification for 
invasion depth of esophageal squamous cell carcinoma (11) 
and the detection of early neoplasms in Barrett’s esophagus 
(12-14). 

While transfer learning using ImageNet as basis is 
widely employed, its efficiency can be questioned. The 
ImageNet dataset (15) consists of 1.2 million images of 
a thousand different categories, including “tree”, “tool” 
and “tractor”, but also more sophisticated categories such 
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as “membranophone”, “face powder” and “mongoose”—
not to mention the 120 dog breeds that have been added 
as categories for fine-grained classification1. Although 
ImageNet pretraining has proven to be an efficient tool 
for medical image analysis with AI, it is at least unsettling 
that a complete understanding of the inner workings 
driving this success is lacking. Moreover, disturbing results 
have been reported on fooling neural networks that were 
trained using ImageNet (16). Therefore, it is not surprising 
that ImageNet pretraining is questioned by He et al. in a 
recent publication (17) and there’s an increasing interest in 
domain-specific pretraining (18,19). The reasoning behind 
this approach is twofold: (I) from a logical point of view, 
pretraining with images that are more similar to the target 
domain is more intuitive than pretraining with images of 
cats, dogs and trees, and, more importantly, (II) it leads 
to better and more robust results that are less prone to 
the natural variation exhibited by the images in the target 
domain (e.g., endoscopic imagery).

In an attempt to demonstrate the effectiveness of 
domain-specific pretraining in endoscopy, our consortium2 
has constructed a set of 494,355 retrospectively collected 
endoscopic images and have roughly categorized a subset of 
3,743 images into five classes (i.e., “stomach”, “duodenum”, 
“esophagus”, “colon” and “other”). Our first experiments 
indicate that even with a small proportion of the images 
labeled and a very modest number of categories, an 
improvement is shown for the detection of early Barrett’s 
dysplasia (20). Moreover, further experiments demonstrated 
that this dataset also offers a suitable basis for an AI 
algorithm to grade the informativeness of endoscopic video 
frames (21). We hypothesize that this dataset, which we 
have titled GastroNet, serves as a better pretraining dataset 
for endoscopic imaging problems than the widely employed 
ImageNet and we are currently setting up the experiments 
that aim to test this hypothesis.

From our experiments, a number of first observations 
can be made: (I) domain-specific pretraining can lead to 
improved results of AI algorithms within endoscopy, (II) 
the power harnessed by such a domain-specific dataset is 
not only limited by the number of labeled samples, but 
also by the number of classes, as this forces the neural 
network to forge complex hierarchical structures with 

high discriminative power and (III) partially labeled, 
poorly structured, heterogenous data can be beneficial for 
pretraining deep neural networks. Especially the latter 
observation is interesting, since most medical data satisfies 
these conditions. However, dealing with this data to unlock 
its potential comes with substantial technical challenges 
and introduces numerous research questions regarding the 
design of deep neural networks and how they are trained. 
How to deal with missing labels, exploit variability in the 
data and combine different types of data during the training 
phase, just to name a few.

Over the past 5 years, AI-assisted endoscopy has grown 
from a curiosity into a valuable asset that will shape the 
future of gastroenterology. About a decade ago, the first 
outlines of this field became slowly visible by retrospective 
experiments on small, homogeneous datasets (22-24), 
recently, large clinical, prospective studies on real-time 
endoscopic video demonstrate that the field has matured 
(25,26). To maintain this momentum, and to make the next 
step into clinical application, additional parameters become 
important, such as, for example, robustness against small 
variations over different imaging devices and interpretability 
of the AI predictions. In this next development stage, data 
will play an increasingly important role, for both training 
algorithms and validating their clinical performance. Given 
the costly acquisition of high-quality labeled datasets, we 
anticipate that retrospectively collected, largely unlabeled 
data will fuel further progress of the field. In particular, the 
abundance of unlabeled endoscopic image data will facilitate 
domain specific pre-training, leading to a domain-native 
neural network that is more robust against the natural 
variations within endoscopic imagery. 
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