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In the near future, nearly every type of clinician, from 
paramedics to certificated medical specialists, will be 
expected to utilize artificial intelligence (AI) technology, and 
deep learning (DL) in particular (1). In terms of exceeding 
human ability, DL has been the backbone of computer 
science. DL mostly involves automated feature extraction 
using deep neural networks (DNNs), which can aid in 
the classification and discrimination of medical images, 
including mammograms, skin lesions, pathological slides, 
radiological images, and retinal fundus photographs.

A key differentiating feature of DL (1) compared 
with other types of AI is its autodidactic quality; neural 
networks (NNs) are not designed by humans (2). NNs, 
which are considered to have a “black box” nature, have 
been made more transparent by techniques first applied to 
shallow NNs. An explanation to NN responses is through 
using propositional rules (3). Andrews et al. (4) developed 
a taxonomy describing the general features of all rule 
extraction methods. AI can analyze massive images and 
patient data which a single radiologist could not.

However, as a set of parameters, DNNs learn to produce 
an output on their own. Known inputs and algorithms of AI 
programs start the process, while the resulting parameters 
are hard to interpret (2). These “black box” problems lead 
to opaqueness in DL. The aim of this editorial commentary 
is to help realize the transparency of “black box” machine 
learning for radiologic imaging. To achieve this, a renewed 
attack is undertaken on the “black box” problem and the 
limitations of DL for radiological imaging, and an attempt 
is made to reveal a paradigm shift in radiological imaging 

in which diagnostic accuracy is surpassed to achieve 
interpretability, which is highly important for predictive 
models.

As the “black box” nature of DL in medicine has been 
strongly criticized, especially in the radiology field, the 
new “black box” problem caused by highly complex DNNs 
must be addressed, and for any solution, transparency and 
interpretability are needed. However, at present, a number 
of “black box” problems remain in relation to DNNs (5). 
A large body of research has been conducted on the “black 
box” of algorithms, and this topic continues to generate 
substantial controversy.

Especially in the case of DNNs, it is not possible to 
understand the determination of output. In contrast to 
computer vision tasks, DL in the field of radiology remains 
considerably limited in terms of its interpretability and 
transparency. Owing to the “black box” nature of DL, where 
results can achieve high accuracy, but with no specific medical-
based reasoning, effectively interpreting and applying DL to 
radiological images in the clinical setting requires sufficient 
expertise in computer science. Owing to this, the results from 
DL can be hard to interpret in clinical, limiting their ability to 
be used in medical decision-making (5).

Some researchers have highlighted the importance of 
accuracy over interpretability; however, it is the view of the 
present paper that improved transparency of DL would 
encourage the universal accept of such methods for medical 
imaging (5).

Context also plays a part. If the life-and-death decisions 
made by systems only provided trivial improvements in 
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accuracy over human, then greater transparency would be 
warranted compared with decisions made with near-perfect 
accuracy or for lower stakes (6). Especially in the medical 
field in which accountability is of crucial importance and 
could lead to severe legal consequences, DL is usually 
insufficient when used for prediction. In addition, in terms 
of outcome prediction, predictive radiotherapy based on 
DL could still be a long way off. First, radiation oncologists 
must acquire the ability to understand predictions using DL 
algorithms; whereas their interpretation frequently remains 
not easy as these are still thought “black boxes” (6).

The development of an interpretable proof-of-concept 
DL system for clinical radiology was recently reported 
by Wang et al. (7). Their prototype allows the automatic 
identification, mapping, and scoring of radiological features, 
thereby allowing radiologists to understand the elements 
of decision-making behind classification decisions. This 
concept of interpretability is the first major contribution of 
Wang et al.’s work.

DL algorithms could substantially improve the clinical 
workflow of diagnosis, prognosis, and treatment. However, 
transparency is vital in this process. Indeed, clinicians would 
be unlikely to accept automated decisions of diagnosis 
without measuring evidence to justify the predictions (7).

A general relationship between the misclassification 
of a lesion entity and the misidentification of radiological 
features was observed in Wang et al.’s model; this could 
present the transparency necessity to identify how and 
when a convolutional neural network (CNN) model fails. 
If a model were to predict nonexistent imaging features, 
clinicians would realize that it had likely made a mistake (7).

Considering the fact that researchers and clinicians 
should be made aware of such nonexistent imaging features, 
the nature of radiological images should be recognized as 
being considerably different from that of computer vision 
images.

For example, the earliest work using a CNN in the field 
of medical imaging had the same limitations as those seen 
for detecting diabetic retinopathy (DR) (8). A fundamental 
drawback inherent to DNNs is that, in regard to DR, the 
NN is not provided with any explicit definitions of the 
features to explain the medical diagnosis. The quality of the 
image is judged by graders using the rubric in the Grading 
Instructions, while the severity is graded based on the 
International Clinical Diabetic Retinopathy scale; thus, the 
diagnostic process is a “black box” (8).

As a more constructive way to resolve this “black box” 
nature, specific features can be generated from six classes 

of liver tumor samples by analyzing magnetic resonance 
imaging (MRI) scans; this could provide radiologists with 
guidance for detection and diagnosis. These distinctive 
features, called semantic features (9), can be used to 
create predictors of liver tumors. Thus, the second major 
contribution of Wang et al.’s work was the proposal of a 
concrete method to capture from a dataset the semantic 
features of six classes of liver tumor samples.

In an approach known as radiomics, quantitative 
information can be generated from liver tumors using MRI 
scans, and then analyzed using machine learning or high-
dimensional data analysis and categorized into different 
groups. Traditional quantitative features can be used for the 
creation of biomarkers for tumor prognosis, analysis, and 
prediction.

However, even in the case that such a method enables 
the accurate assignment of instances to groups, it 
cannot provide users with the reasoning underlying that 
assignment. Therefore, systems and/or algorithms that are 
able to provide insights into these underlying reasons are 
needed (10).

It is the view of the present paper that traditional 
quantitative features generated from radiological images 
using MRI scans and computer vision images can be used 
only for classification tasks. After a machine learning 
algorithm has been trained, it still remains difficult to 
understand why it provides a particular response to the 
training dataset, and this can be a disadvantage, especially in 
the medical setting, because the main task of state-of-the-
art machine learning algorithms such as DL is to achieve 
very high accuracy in classifying datasets, for example, 
into six separate classes of liver tumors. Machine learning 
algorithms such as DL are currently incapable of explaining 
their classification results.

By contrast, rule extraction (4), a newer branch of 
machine learning that utilizes AI, focuses on how the 
entire dataset is classified. In rule extraction, the rules are 
typically expressed as the most popular and comprehensible 
symbolic descriptions: “if (conditions 1) & (conditions 2), 
… & (condition n), then (target class)”. Rule extraction 
algorithms in the medical field require a sufficient number 
of cases and their final diagnoses as a supervised signal 
(specific class of liver tumor) for learning.

In recent years, CNNs have been used effectively in 
regard to liver tumor analysis (11). However, data are 
currently scarce in the medical imaging field, so transfer 
learning has been used as an alternative to constructing a 
new model.
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CNN convolution layers contain representations of edge 
gradients and textures after learning. When propagated 
through fully connected layers, a variety of high-level 
features are learned by the CNN. Then, deep features 
(the outputs of units in the layer) are extracted from fully 
connected layers and denoted by the number of the feature 
from the learning tool (12).

To utilize deep features, the present author recently 
devised a new method known as deep belief network (DBN) 
Re-RX with J48graft (13) to extract interpretable and 
accurate classification rules from DBNs (14). This method 
was applied to three small, high-abstraction, rating category 
(semantic or structured) datasets with prior knowledge, 
i.e., semantic features (9): the Wisconsin Breast Cancer 
Dataset (WBCD), the Mammographic Mass dataset, and 
the Dermatology dataset. After these three datasets were 
trained, a rule extraction method capable of extracting 
accurate and concise rules for DNNs trained by a DBN was 
proposed. The rationale behind this method is based on 
deep features (12) and the large margin principle (15) for 
shallow NNs.

The results indicated that the Re-RX family (16) could 
help bridge the divide between the high learning capability 
of DBNs and the high interpretability of rule extraction 
algorithms such as Re-RX with J48graft (10,17). This could 
lead to a better trade-off between predictive accuracy and 
interpretability. This method can be applied to not only 
ratings categories, but also image datasets consisting of 
semantic features. Although traditional quantitative features 
do not provide sufficient high-level abstraction for input 
attributes, semantic features, which include prior knowledge 
graded and/or rated by radiologists, can be useful for input 
features, as demonstrated in the present author’s work (13).

In addition, applying fully connected layer-first CNNs 
that the fully connected layers are imbedded before the 
first convolution layer, DBN Re-RX with J48graft can be 
extended to CNN Re-RX for high-level abstraction datasets 
(deep features) (18) for the Re-RX family (16) uses decision 
trees like C4.5 (19) and J48graft (C4.5A) (20).

Generally, irrespective of the input and output layers in 
any type of DL for high-level abstraction images with prior 
knowledge (semantic features) (5), rules can be extracted 
using pedagogical (4) ways such as C4.5, J48graft, the Re-
RX family, Trepan (21), and ALPA (22).

However, the provision of radiological images is often 
insufficient in a large number of abstraction datasets with 
prior knowledge (semantic features). This difficulty may be 
avoided by noticing the high-level abstraction of attributes 

(semantic features) related to the radiological images. 
According to the present author, since semantic features 
could bridge the gap between a priori knowledge and 
rule extraction, the most important point in realizing the 
transparency of DL in radiological images is the use of the 
high-level abstraction of attributes (deep and/or semantic 
features) related to medical images with known knowledge 
graded and/or rated by radiologists, not the fact that driven 
characteristics depend on filter responses solicited from 
massive training data; this suffers from a shortage of direct 
human interpretability. Wang et al.’s work thus provided 
important insights to generate useful semantic features in 
rule extraction.

Furthermore, Lee et al. (23) shared opinions on ways 
for optimizing DL model performance. Previous work has 
proved that deeper NNs deliver better visual recognition 
performance than shallower NNs when training datasets 
are kept constant (1). Simply picking the deepest NN (12),  
whereas, was not the answer in the study by Lee et al. (23).  
By using preprocessing and network optimization 
techniques, they were able to achieve much greater 
performance gains compared with the small incremental 
improvements gained using deeper and more complex 
NNs (1). Their results suggest that application-specific 
customization techniques are more effective than the 
choosing the underlying CNN architecture to improve 
performance. Their results also suggest that high accuracy 
classification by DL and high interpretability by rule 
extraction should be used for different purposes in 
radiological imaging.

The strengths of Wang et al.’s study (7) were that it 
provided an effective technique for interrogating concerned 
portions of an existing CNN and offered a rationale for 
classification through analyzing relevant features. Their 
ideas can be adapted to wider interfaces with standardized 
reporting systems like the Breast Imaging Reporting and 
Data System (24).

On the other hand, the weakness of Wang et al.’s study is 
that their method does not use deep features concretely in 
comparison with the method proposed by Paul et al. (9). By 
contrast, they attempted to relate and explain deep features 
with respect to quantitative and semantic features.

Although the computational power of CNNs is typically 
supplied to create quantitative features by so-called future 
engineering using many graphical processing units, the 
works by Wang et al. (7) and Paul et al. (9) are expected 
to increase the degree of abstraction of semantic and 
deep features used for rule extraction and to accelerate 
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the explainable AI boom in medical imaging beyond 
quantitative to qualitative AI.
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