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Introduction
 

The diagnosis’s of neurological conditions is a difficult and 
confounding task carried out by specialist practitioners. 
The aim of this work is not to displace the specialist but 
to provide an early detection filtering tool to assist in the 
better allocation of specialist resources. As neurological 
conditions are confounded by a significant number of factors, 
the conditions aetiology, genetics, trauma, nutrition, socio-
economic conditions and resources (1), their diagnosis is a 
resource intense process completed over a period of time.

The advent of artificial intelligence (AI) algorithms 
and wide spread relatively low cost computing power, has 
provided the opportunity to transfer specialist knowledge to 
machine based platforms allowing the use of this knowledge 
by a wider audience. Making simple screening tools readily 
available allows better resource allocation. The intention of 
this project is to develop and demonstrate a methodology 
to produce such low cost diagnostic tools. The paper is 
constructed as follows: Introduction to cerebral palsy and 

its diagnosis; literature review, examining AI algorithms that 
have been proposed and tested for similar diagnostic testing 
tools; data sources used for in this research; discussion of 
initial DNN model architecture; training and testing results; 
discussion of results and; proposed further research program.

Cerebral palsy (CP)

CP is an umbrella term for a range of cerebral disorders 
all attributed to disturbances of the developing foetal or 
infant brain. CP mostly originates from a brain injury event 
occurring before the age of 6 months corrected age. A CP 
diagnosis requires motor dysfunction, a cerebral injury, no 
progression of the injury and involvement of the central 
nervous system with other neurologic and behavioural 
disorders (2). Genetic pre-dispositions, maternal disease, 
premature birth, low birth weight and asphyxia during birth 
are all indicators of increased risk of CP (2-4). Australia is 
one of only a few countries that have a CP specific register 
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for the monitoring of the condition in the community. The 
current rate of CP per live births in Australia is between 
0.14% and 0.2%, worldwide the rate has been static for 
60 years at 0.2%, the rate of CP increases with increase in 
pre-term birth rising to 14.6% in children born at 20 to  
27 weeks gestation (4,5). The annual cost of per person with 
CP is estimated to be between $43k and $115k ranging with 
severity of disability (6). 

Early diagnoses of CP is considered essential because 
it enables specific interventions at times when neural 
plasticity maximises possible gains (7,8). However to date 
there is minimal evidence supporting the efficacy of early 
intervention, Hadders-Algra, Herskind and Granild-Jensen 
(3,4,9,10) argue that this is a consequence of studies on early 
intervention concentrating on children at high risk of CP 
and is not indicative of more general cases and that further 
study is required. Blauw-Hospers, Hadders-Algra (11)  
reviewed 34 studies of early intervention and found that 
specific motor training programmes, such as training of 
locomotor movements on a treadmill or interventions 
aimed at stimulation of active motor response have been 
shown to have a positive effect on development.

Diagnosis of CP 

The typical course of a CP diagnosis begins with a risk 
assessment where, pre-term children, those born with 
birth weight <1,500 g are considered high risk. Early 
symptoms include abnormal muscle tone, epilepsy, gastro-
oesophageal reflux and feeding difficulties. There are many 
casual mechanisms for CP including, perinatal stroke, 
hypoxic ischemic encephalopathy (HIE), infection, and 
birth asphyxia (12). Hadders-Algra (3) notes that the most 
common lesion in children with CP is damage to the 
periventricular white matter (19% to 45% of cases), and 
grey matter injuries including the basal ganglia, thalamus 
(21%) and cortical infarcts (10%). Scanning techniques such 
as cranial ultrasound and brain magnetic resonance imaging 
(MRI) are strong predictors of CP with sensitivity in the 
range 86% to 100% and specificity in the range of 89% to 
97% in studies of high risk children (13). Aisen et al. (14) 
note that for up to 17% of children with CP imaging fails 
to detect any abnormalities. 

Most children born with CP are not born premature 
and will go undiagnosed until abnormal development is 
observed. Typically this occurs between 13 months, on 
detection by paediatricians or 27 months, instigated by 
parental concern (15). For low risk children detection is 

generally through developmental observation. Researchers 
have identified the Fidgety movement period of general 
movement (GM) development with the course of CP (16). 
GMs consist of gross motor movements of variable speed 
and amplitude involving all parts of the body but lacking 
any sequence of the body parts. GMs appears in the foetus 
at around 28 weeks postmenstrual age (PMA) in the womb 
before individual limb movements are observed. From  
38 weeks GMs are observed to change to a writhing pattern 
which continues until around 8 weeks post term when the 
writhing movements are replaced by fidgety movements. 

Fidgety movements (FMs)

FMs are characterised by small velocities and amplitudes 
with movement of neck, trunk and limbs in all directions, 
and are seen continually in awake children who are not 
fussing or crying (13). FMs may be seen as early as 6 weeks 
but typically occur around 9 weeks and fade out at around 
20 weeks post term. FMs are most reliably detected at 12 to 
14 weeks post term age (17).

Fidgety movements may occur in isolation or increase 
and decrease in frequency as they traverse the body. 
FMs generally occur in all body parts, although not 
simultaneously. The FMs often occur with other movements 
such as wiggling-oscillations and saccadic arm movements, 
leg lifting, hand-knee contact, trunk rotation and axial 
rolling. The challenge of detecting FMs is thereby increased 
by the presence of these gross motor movements (17). 

General movements assessment (GMA)

Current studies indicate that the GMA is the most sensitive 
and specific test available to allow early detection of CP. 
Studies show GMA has sensitivity and specificity of 98% 
and 91%, compared with cranial ultrasound 74% and 
92%, neurological examination 88% and 87%, while MRI 
ranges from 86% to 100% and 89% to 97% respectively 
(4). GMA does not provide a prediction to severity of the 
condition (13,17). The GMA is applied through gestalt 
observation of movements by a trained observer, the 
process involves looking for abnormal GMs, characterised 
by limited variation and limited variability in GM, the 
presence of cramped synchronised general movements 
(CSGMs) and the absence of fidgety movements are strong 
indicators of abnormal GMs. CSGMs lack fluency and 
complexity they appear stereotyped, with limb and trunk 
muscles contracting and relaxing almost simultaneously. 



Journal of Medical Artificial Intelligence, 2019 Page 3 of 10

© Journal of Medical Artificial Intelligence. All rights reserved. J Med Artif Intell 2019;2:15 | http://dx.doi.org/10.21037/jmai.2019.06.02

GM assessment requires considerable practise and training 
before an assessor reaches a proficiency level that provides 
reliable and accurate evaluations. The GMA requires 
the child to be in an alert awake state, but not stressed or 
crying. Most accurate assessments, for the prediction of 
CP, occur with the child between 12 and 20 weeks, which 
is less than optimum from an early intervention and neural 
plasticity perspective (3,18).

Current work

The proposal of this project is to transfer expert judgment, 
in terms of ability to recognise and rate the GMs, specifically 
FMs, in neo-nates to an AI based diagnostic tool. Clinicians 
require significant levels of training and experience to obtain 
levels of testing reliability suitable for use in clinical settings. 
Current machine learning techniques, in particular the field 
of deep learning, do not provide a panacea that replaces 
experience and judgment; however, they can supplement and 
augment those judgements. Automation of diagnostic testing 
can improve levels of test reliability through reduction in 
variation and tester biases, however automation it is also 
associated with a perceived loss of autonomy and clinical 
judgment (19). It is the intention of this project to provide 
these sorts of benefits while being aware of the limitations of 
the proposed technologies.

Directed feature selection

One of the premises of this project is that the current 
diagnostic techniques of the GMA examination can be 
mapped to machine learning (ML) based classifiers, as 
seen in the papers reviewed below. There are two basic 
approached to the mapping problem, either allow the ML 
algorithm to identify relevant features and map these to 
the diagnostic output, or pre-select features and use these 
to map to the ML classifier. Rahmati et al. (20) argue 
that when there are relatively few subjects but multiple 
possible features, allowing the ML classifier to select 
features frequently leads to a suboptimal solution. The 
power frequency spectrum of 78 infants’ post-term age 
10 to 18 weeks was examined using video capture and six 
accelerometers attached to the limbs of the children, to 
determine a suitable set of features, and to compare data 
sources. An optical flow algorithm, as given in (21), was used 
to calculate flow vectors for body segments. A fast Fourier 
transform, FFT, analysis was done of both the video flow 
vectors and the accelerometer data, and a cross-validation 

algorithm was applied to select significant features, 
frequency bands, from the power frequency spectrum. The 
frequency bands between 25 and 35 Hz were found to be 
most significant, Rahmati et al. (20) interpret this as the  
25 Hz being associated with slow translational movement 
while the 35 Hz is associated with abrupt changes in 
motions, jerking. 

Stahl et al. (22) also used optical flow to derive body 
part flow vectors from video of infants (15 with CP and 67 
without). Wavelet analysis, an extension of FFT’s, was used 
to obtain a wavelet power spectrum from the flow vectors. 
From this data three sets of features were derived absolute 
motion distance, relative frequency and magnitude of 
wavelet coefficients. These were then presented to a support 
vector machine (SVM) for classification. Features were 
presented individually and in combinations to the SVM to 
determine the most discriminatory set of features. It was 
found that absolute motion distance and relative frequency 
provided better discrimination than wavelet coefficients.

Friedman et al. (23) noted that infants at risk of developing 
CP often also suffer from vocalisation issues and prosed using 
vocalisation recordings in combination with video and depth 
data to derive classification features. A number of researches 
(18,23-26) looking at the CP classification problem have used 
the Microsoft Kinect system, which provides both an RGB 
video and a distance to camera, depth, channel. The system 
was developed for Xbox play interactions and is quoted as 
a simple hardware system for depth data gathering; it is 
designed around children with bodies greater than 1m tall 
and appears to be less effective with smaller bodies. Friedman 
et al. derived a set of descriptive statistics from the data and 
used these as input features to a step wise linear discriminant 
analysis algorithm for subject classification. Forty-one infants 
were examined, with 18 classified as normal neurological 
development and 23 as abnormal, the classifier was found 
to have a performance accuracy of 87% (sensitivity 73%, 
specificity 98%) compared to clinical experts. The study 
results also verified the correlation between motor and vocal 
features during neuro development. 

Ansari et al. (27) present a system for capturing infant 
motion to monitor and classify Hammersmith Infant 
Neurological Examinations (HINE). This system involves 
videoing the infants while carrying out exercises and then 
identifying the exercises performed. Four exercises are 
being classified, pulled to sit, vertical suspension, lying 
horizontal and lying vertical. The video is pre-processed by 
applying the SIFT algorithm to each frame. The features 
detected by the SIFT algorithm, across multiple frames, are 
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then clustered using a K-means algorithm and a descriptor, 
a visual word for the K-means clustered SIFT points, was 
generated. Features for classification were then generated by 
treating the descriptors as so many words in a collection of 
documents and applying a bag of words (BOW) algorithm to 
generate a descriptor for the frame sequence. These sequence 
descriptors were than used as inputs to train a Hidden 
Markov Model, HMM, to classify the sequences according 
to the four exercises. It was found that this approach could 
not distinguish pulled to sit, and lay vertically well, so a 
second step was added to improve the classification. A final 
classification accuracy of 84% was achieved. 

Interestingly, the additional step added by Ansari et al.  
to improve classification involved using skin colour to 
segment the infant’s movement from the image. The frames 
were converted from the RGB colour space to the YCrCb 
color space as the Y, luminance component of the colour 
space was found not to affect the segmentation process 
making skins of different complexions easier to detect. In 
total Ansari et al. (27) applied seven different computer 
vision (CV) algorithms to process the video data prior to 
classification using the HMM approach. 

Khan et al. (28) developed a tool for the monitoring 
of Vojta therapy in the home. Votja therapy, applied with 
infants suspected of suffering CP, is a reflex nerve simulation 
technique intended to stimulate natural reflexes that appear 
suppressed in CP children (28). The intention was to use 
this as a feedback tool to improve the quality of therapy 
provided by the child’s parents. As with the earlier papers 
the approach uses both video and depth data of infants 
undergoing therapeutic treatment, and seeks to isolate 
handpicked features from the data stream for presentation 
to a classifier, a SVM in this example. The performance of 
three algorithms for pre-processing and segmenting the 
child’s image into major body components are compared. 
Bounding boxes are used to identify the total movement 
of segmented areas of the images such that the area of the 
box is proportional to the level of movement observed. 
Nine geometric ratio features are derived to describe the 
bounding boxes and these are presented for classification 
to the SVM. A 5-fold cross-validation was performed 
to validate the system, with 10 subjects, and found to be 
classifying at around the 80% level (29). 

The work reviewed so far has concentrated on two main 
aspects of the problem, analysing the video to extract motion 
data and classifying the extracted data. To retrieve motion 
data a number of algorithms have bene used and tested, all 
with varying degrees of success. Classification has been based 

on using a subset of features selected from the images by 
application of a particular CV algorithm. The chosen features 
are then presenting to ML classifiers, such as SVM and HMM. 
An alternative approach which has also been applied is to allow 
the classifying algorithm to decide what constitutes the features 
of interest of the image and present these to the classifier.

Un-directed feature selection

Li et al. (30) trained a three layer convolutional neural 
network (CNN) of (C6,13),p,(C72,9),p,fc configuration, 
using the back propagation stochastic gradient decent 
(SGD) algorithm. The CNN generated a score for all 
possible object locations in a frame with the highest score 
location being chosen as the object’s location. In order to 
use the CNN for a tracking task the SGD algorithm was 
modified by adding a temporal element to the training data. 
The temporal element is achieved by drawing the mini 
batch samples from the positive and negative results sets 
assuming a different distribution for each set. Testing of this 
algorithm achieved a tracking success rate of 83% accuracy 
while the state-of-the-art, in 2014, was 74%, compared to 
the skin colour modelling tracking method.

Wang et al. (31) investigated the use of CNN’s in general 
object tracking. A VGG-16 CNN trained on ImageNet 
database was examined to identify the relationship between 
the data presented at the receptor field (inputs) and the 
activation fields of each layer of the CNN. Wang et al. [2015] 
observed (I) activated feature maps tend to be sparse and 
localised compared to the receptor field. (II) The feature 
maps are noisy and do not discriminate a target from its 
background. (III) Lower layers appear to encode features for 
discrimination between object classes while the higher layers 
encode the overall concept of the object and its background. 

Wang et al. (31) used these observations to develop 
their tracking algorithm. The proposed algorithm takes 
the outputs of the two layers, 4-3 and 5-3 and passes these 
through, two two-layer CNN’s, labelled SNet and GNet. 
The SNet layers occur early in the CNN and learn filters 
associated with basic edge and pattern detection, semantic 
features. The GNet layers occur later in the CNN, these 
filters are believed to learn more global features, that is 
combinations of basic shapes and edges. Following training, 
GNet remains static while the SNet is updated every  
20 frames according to an adaption rule and a discrimination 
rule. The output of the GNet layer is fed to a distracter 
detector, this evaluates the confidence of the GNet 
prediction and if it falls below a threshold, it is assumed a 
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distractor is present and the output of the SNet is used to 
make the final prediction, in the absence of a distractor the 
output of the GNet is preferred. In comparison with Li  
et al. (32) this algorithm was found to perform 3% better 
with a precision score of 88% and accuracy score of 85%. 

Soran et al. (33) use a 14-layer CNN to estimate the 
severity of spinal muscular atrophy, SMA type 1, in infants. 
Seventy, two-minute videos, taken at 30fps, of 10 subjects, 
up to 26 months of age, lying down and behaving naturally, 
were used to train the CNN. As CNN’s require significant 
levels of data for training a sliding window approach was used 
to create multiple videos from the original set. The sliding 
window was set to step at 50 frame intervals and produce 30 
second video snippets for training and testing. The issue of 
limb occlusion was resolved by ignoring sequences of data 
when this occurred; it is assumed this was done as a manual 
selection as no mention of techniques to identify occluded 
limbs is specified in the paper. The CNN was able to estimate 
the severity of SMA type-1 condition to and average error 
rate of less than 10%. This was a good result considering the 
relatively small amount of data available for training. 

Moharir et al. (34) investigated the use of two different 
deep learning algorithms, AlexNet and GooLeNet, as 
classifiers, both these networks are CNNs, although their layer 
architecture differs considerably. The networks were trained 
on audio recordings, of 1 second duration, from children who 
had suffered asphyxia at birth and well as children who had 
normal births. As a note the abnormal to normal ratio of the 
training data was 2:1, compared to the natural occurrence 
rate for birth asphyxia of 0.86 per 1000 (35). The GooLeNet 
produced a classification accuracy rate of 94% compared to 
the AlexNet performance at 92%. 

Shukla et al. (36) also used a pre-trained CNN, AlexNet, 
to classify images of subjects and detect a range of 
neurological conditions. The classifier was trained to classify 
images into six groups, autism, foetal alcohol syndrome, 
Down syndrome, intellectual disability and cerebral palsy. 
A pre-trained AlexNet, trained on the Labelled Faces 
in the Wild, LFW data set, was used as an encoder to 
automatically encode key features from the image to be 
classified. As the AlexNet CNN is not used to classify the 
images, a separate classifier, in this case a SVM was used. 
The training of this system involved presenting the images 
to the AlexNet, then taking the AlexNet outputs at layer fc7 
and feeding these as inputs to the SVM, the SVM weights 
were then adjusted to obtain the desired classification; that 
is the AlexNet remained unchanged by the training process. 
In the deep neural network literature this technique is 

referred to as transfer learning (37).
Subjects in the Shukla et al. (36) study were from three age 

groups, 0 to 6 years, 6 to 12 years and 12 years and above. 
The classifier SVM was trained on a test set of 1,196 normal 
and 1,196 abnormal examples, again training on an elevated 
normal to abnormal ratio. The classifier was tested both 
against a test set and human experts; the results of these tests 
indicated the classifier performing at least at human level.
Table 1 summerises the results of the studies reviewed. The 
table shows that the current best practice baby movement 
classification systems produce accuracies between 85% and 
90% with specificity and sensitivities at similar levels. By 
comparison expert classifiers achieve accuracies around 98% 
(4) indicating the available scope of improvement for this 
project.

Data source

A common problem for projects looking at automating the 
detection of cerebral palsy is the paucity of available data 
for training and testing, Zhang and Suganthan (38) tabulate 
20 studies with an average of 80 CP and 135 Normal 
subjects. The Cerebral Palsy Alliance research foundation 
is currently running a data collection program. The parents 
of children under 6 months of age, who have cerebral palsy 
or are at high-risk of having cerebral palsy, are invited to 
participate. The participant’s children undergo a number 
of assessments including a video recording of the child’s 
movements. The video is shot on a constrained background 
and consists of the child lying calmly while being filmed 
to replicate the GMA assessment. Background shadings, 
blankets and mats, vary between videos, as videos are shot in 
the home environment. The recording application provides 
a shape template on the viewing screen to ensure scaling 
between videos is consistent. The videos are currently being 
correlated and labeled by the Cerebral Palsy Alliance, (CPA), 
research foundation; to date over 500 videos have been 
labeled. This resource is being made available to this project 
and represents a significant increase in the available data for 
a CP assessment project compared with prior projects. 

On average a practitioner of Prechtl’s General Movements 
assessment can make an initial assessment within 20 seconds 
of viewing the child’s movements with a sensitivity and 
specificity of 98% and 91% (4). Using this assumption, 
the data set has from CPA been expanded by editing the 3 
minutes videos into 20 second segments. Fidgety movements 
do not occur continuously, so 5–20 second segments were 
constructed at 20 second intervals, for a total data set of  
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2,445 video segments. To reduce the data per input video 
the 20 second segments were sampled 5 frame intervals, 
producing 145 frames per segmented video. 

Initial approach

As an initial step a simple model has been constructed 

using a transfer learning approach. The model was 
constructed using the Keras VGG19 model, trained on 
the 1,000 classes of the ImageNet database (39). Image 
features were taken from Layer 8 of VGG19, passed 
through a max pooling layer and normalized (40) before 
being inputting to an LSTM layer for classification of the 
image sequence, see Figure 1.

LSTM 
Layer

LSTM 

LSTM 

H0

H144

Dense
RELU

58 Neurons

Output
Softmax
7 classes

VGG19 
layers 1 to 8

Max
Pool

Normalise
layer

Frame 1

Frame 145

Video input
145 frames

Figure 1 Pretrained VGG19 to LSTM—simple model.

Table 1 Comparison of baby movement classification algorithm performance

Study/method Detecting Vision/sensors Sensitivity Specifity Accuracy

Rahamati (20), SV and hand features FM’s 2d video, depth channel, 
patches on limbs

86% 92% 83%

Ansari, Roy and Dogra (27)

Skeleton features + HMM Limb position during 
exercise

2d video No report No report 64%

Bag-of-words features + LSTM-RNN No report No report 65%

Bag-of-words features + HMM (one pass) No report No report 79%

Bag-of-words features + HMM (two-pass) No report No report 84%

Kahn, Helsper, Farid and Grezgorzek (28)

Pre-processing Algorithm 1 and SV Limb position during 
exercise

2d video, depth channel 86.01% 80.93% 83.29%

Pre-processing Algorithm 2 and SV 94.23% 88.08% 91.03%

Pre-processing Algorithm 3 and SV 98.20% 95.71% 97.00%

Stahl et al. (22), SV resting saliency of optical 
flow features

Absolute motion distance GM's 2d video 76.70% 95.10% 91.70%

Relative frequency 85.30% 95.50% 93.70%

Wavelet coefficient 56.00% 90.70% 84.40%
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Initial results

A 10-fold cross validation strategy with an 80% training 
20% test/holdout data split was adopted for training the 
model. The ADAM optimizer was adopted for training with 
a fixed learning rate of 0.001 and an early stopping strategy 
that produced average training runs of 120 epochs.

The first trained model produced an overall classification 
accuracy of 65.1% with a standard deviation of +/- 1%. 
Examination of the confusion matrix (Figure 2) shows that 
the model classifies Normal videos with great confidence, 
but struggles with intermittent and needing follow up, 
classes. Classification of these border line classes is also a 
difficult task for experts. 

Discussion

The natural occurrence rate of CP in the data set, under 
6 months of age at high-risk, is approximately 15% (M 
Fahey, 2019, personal communication). Such a ratio normal 
to abnormal, 85%:15%, represents a challenge for DNN 
training as the natural distribution is unbalanced. The data 
set reasonably reflects the expected natural distribution, see 
Table 2 below. 

In medical diagnosis sensitivity is preferred to specificity, 
i.e., the consequence of false negatives outweighs the 
consequences of false positives, at present the confusion 
matrices indicates that the model tends to sensitivity (50.8%) 
over specificity (27.4%), making it unsuitable in its current 
state, and performing poorly compared to the systems 
previously reviewed, sensitivity (>80%) and specificity 
(>90%). 

These results are not unexpected as the project is in the 
early stages and with further work a more robust result is 
expected.

Proposed program

Moving forward the proposed program is to continue to 
explore the use of transfer learning, to pre-process the video 
frames to detect relevant features. An empirical examination of 
the convolutional layers of the VGG19, ResNet and Inception 

Figure 2 Confusion matrix.

A
ct

ua
l

Not 
classifiable

0.6%

0.6%

0.0%

0.0%

0.0%

0.3%

0.0%

Not classifiable

Needs 
follow up

0.6%

2.3%

0.3%

2.6%

0.6%

0.3%

0.0%

Needs follow up

Sporadic

0.0%

0.0%

0.6%

0.0%

0.6%

0.0%

0.3%

Sporadic

Absent

0.6%

0.9%

0.0%

0.3%

0.0%

0.6%

0.0%

Absent

Abnormal

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%Abnormal

= False positive

= False negative

= True

Normal

0.9%

63.4%

6.0%

8.0%

2.3%

5.1%

0.0%

Normal

Intermittent

0.0%

1.1%

1.1%

0.3%

0.0%

0.3%

0.0%

Intermittent

Prediction

Table 2 Data class distribution

Classification Class % samples Normal/Abnormal Dist

Normal 68.5%  

Intermittent 7.4% 75.9%

Not classifiable 3.1%  

Needs follow up 9.6%  

Sporadic 3.9%  

Absent 7.0%  

Abnormal 0.6% 24.1%
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models will be made to identify the most appropriate layers for 
sourcing the input data to the LSTM. A particular focus will 
be on hand and digit movement and detection and identifying 
the layers that match this level of resolution.

How much video is required before an LSTM can 
identify the presence of CP is a key research question. It is 
hypothesized that as a minimum the videos should be no 
shorter than required for an “expert” to make a positive 
identification. A test program will be run to establish this 
minimum length using the training data and a number 
of CP experts to evaluate a number of videos of varying 
lengths. Having established the minimum length required, 
the training set will be edited to produce multiple videos of 
similar lengths, using off sett frames to further augment the 
available data for training and testing of the system. The use 
of background subtraction to highlight motion in the input 
images, will be explored.

 When making a diagnosis a key source of information is 
the frequency of occurrence, how likely a particular event 
or condition is dictates how much weight we assign to its 
co-occurring data. The review highlights that frequency of 
occurrence is information that is typically withheld from 
the trained classifier, when the classifier is used to assess a 
condition and there is minimal available training data. In 
typical cases the ratio of normal to abnormal conditions is 
near 50:50, while the natural occurrence rate tends to be 
closer to 1,000:1. The naïve argument in favour of these low 
ratios is the observation that we learn through repetition 
and the greater our exposure to a family of problems and 
their solutions, the better we become at solving these 
problems, this argument is extended to machine learning 
algorithms by analogy.

The analogy ignores the fact that unlike a learning 
algorithm, we are constantly updating our learning samples, 
hence we tend to experience higher ratios of normal/
abnormal cases despite our best intentions otherwise. The 
problem is not un-recognized in machine learning, and 
is typically referred to as over fitting (41). An over fitting 
algorithm will recognise its test set with 100% accuracy 
and yet fail to generalise to previously unseen data. This 
behaviour is analogous to the human trait of a confirmation 
bias Wason as cited in (42) demonstrated this trait by 
showing subjects a sequence of three numbers and asking 
them to derive the rule that generated the numbers; 80% 
of the subjects derived the wrong rule and proceed to seek 
confirming evidence for their rule rather than attempting 
to falsify their rule. This results has since been replicated 
multiple times and is linked to a sense of self-esteem, as 

evidenced by tendency to select friends who hold similar 
views and beliefs (42). By making the naïve assumption, that 
more of the same is better, we may be in advertency biasing 
the network in a similar style. A further research question 
will be to explore the effects of normal/abnormal ratios, in 
the training data, on the chosen classifier.
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