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Dietz and Pantanowitz (1) present a well-explained 
and informative viewpoint on the history, theory, and 
science behind, as well as, current and potential future 
uses and challenges of, artificial intelligence (AI) and 
machine learning (ML), for pathology. They emphasize 
the importance of development of a “killer suite” of 
AI applications whose use is evidence-based, that will 
accelerate acceptance and integration of digital pathology 
(DP) into diagnostic practice. This is an invited reflection 
on their editorial content with reference to findings from 
other groups. 

Dietz and Pantanowitz remind us that use of AI in 
pathology is not new (1). The authors explain that machine 
learning is a branch of AI, where algorithms are developed 
from training data to predict outcome for test data. With 
deep machine learning (DL), a software model of a neural 
network, with multiple layers, is given data with each 
successive layer in the network learning from the previous 
layer. Rather than giving it instructions to perform a task, 
it is given huge amounts of data to learn the best possible 
representations to perform the task and to learn how to 
adapt in the most effective way with increased exposure to 
data (2). The two main categories of ML, are supervised 
and unsupervised (2). The unsupervised learning technique 
identifies hidden patterns or intrinsic structures in the input 
data and uses these to generate a meaningful output. 

DL is being increasingly established over traditional 
machine learning with potential for more sophisticated 
performance compared to humans (3,4). The characteristics 
of tumours and their hosts represent a wealth of data to be 
mined and the investigative disciplines of medicine are fertile 

ground for development of sophisticated AI tools. The 
ability to extract complex information from scanned H&E 
stained slides, coupled with other laboratory tests, could 
lead to new diagnostic, and theranostic information (5).  
Madabhushi et al. describe exciting potential for data 
fusion algorithms combining radiological, histological, and 
molecular characteristics of a tumour for prognostic and 
predictive purposes (5,6). 

However, just as we are finding that there are areas in 
tissue pathology where digital pathology is unsuitable, or 
needs the back-up of traditional glass slides, such as when 
looking at eosinophils, dysplasia and small microorganisms 
like helicobacter (7), so too, it is most likely that there will 
be areas in diagnostic pathology, where AI/ deep machine 
learning will not be a suitable diagnostic replacement. Dietz 
and Pantanowitz (1) comment that “AI is a tool and like 
most tools works best in certain situations”. They emphasize 
that DP and AI are not the “Deus ex machina of anatomical 
pathology”. Vamathevan (2) similarly explains that despite 
the potentially high value of ML for diagnostic pathology, it 
unfortunately does not have an all-purpose capacity. 

Firstly, although a good ML model can generalize well 
from training data to test data (2), some AI output can give 
biased results. Israni et al. (8) comment that ““flawed or 
incomplete data sets that are not inclusive can automate 
inequality”. This includes situations where the original 
data was of variable quality, with lack of standardisation 
of scanners and staining of tissue between laboratories, 
with a paucity of a wide disease range of expert-annotated 
examples, thus not reflective of the heterogeneity of real-
life samples (9,10). 
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Another challenge is that AI is not able to incorporate 
contextual knowledge, into the diagnosis. Pathological 
diagnosis is complex, and for the one pattern under the 
microscope, there may also be a range of potential diagnoses 
and it is the clinical information and the ability to interpret 
that information that needs to be incorporated into the final 
diagnostic decision. It is this aspect of diagnostic decisions 
that is hard to quantitate, that “clinical acumen” or “gut 
feeling” based on years of clinical experience, and depth of 
knowledge. For machine learning, algorithms cannot make 
predictions that incorporate human emotion and response 
to the result. Claridge reminds us that “the best clinicians 
often make decisions based on their instincts which 
have developed through experience” when talking about 
introduction of new decision tools into clinical practice (11).

Schattner describes the persistent rate of diagnostic errors 
and iatrogenic harm despite “advances in scientific knowledge 
and technological capabilities” (12). She encourages us to 
return to 3 clinical paradigms that should underscore all 
clinical practice: pre-symptomatic diagnosis; skillful history 
and physical exam in informing decision-making; enhanced 
attention to patient autonomy and emotional factors. These 
are features that arguably cannot be incorporated into AI 
algorithms. AI technology holds great promise to deliver 
a more sophisticated, efficient and safer health care (3,4), 
hence the promised optimistic future (7,13). But our clinical 
acumen needs to be strong and skillful to critically interpret 
any results. It is our quality assurance and ongoing validation 
tools that should ensure this, as well as, to continue teaching 
our medical students the essential thought process and 
critical interpretation of investigations (14).

Additionally, there is the “black-box” approach of DL 
methods that Dietz and Pantanowitz (1) refer to, and that 
other groups emphasize (2), as the lack of transparency in 
the rationale behind DL decisions for classification tasks. 
The lack of interpretability in how DL arrives at its output, 
also makes it hard to troubleshoot difficulties. Vamathevan 
et al. (2) point out that for histological diagnosis of complex 
cancers such as melanoma, where diagnostic stakes are very 
high (arguably one of the most difficult cancer diagnoses 
to make and one that is associated with high rates of 
litigation) (15,16), this ‘black-box’ may become the choke 
for regulatory agencies because a suitable explanation as to 
how the result was derived with the DL process, evades us. 
Vamathevan et al. also alludes to the human factor in this 
acceptance of AI (2); are we able to trust a result derived 
in such a way, enough to rely on it into the diagnostic 
workflow?

Dietz and Pantanowitz (1) suggest that the enormous 
benefit from DL may not be realized in anatomical 
pathology for some time. But the question is, what do we 
actually want AI to do for investigative medicine. Is it cost-
saving, time-saving, to provide validation and quality, or 
perhaps better accuracy and thus safer practice? And will 
cost of validation and integration be prohibitive? 

Dietz and Pantanowitz (1) anticipate that ‘regulatory 
bodies will in the near future approve deep learning 
techniques that arrive at a diagnosis through a “black 
box.”’ However, they wisely advise that we must proceed 
cautiously during “this dawn of AI in pathology”. Every test 
we employ in medicine, pathology or otherwise is imperfect 
with false positives and negatives. Predictive and prognostic 
tools delivered through AI would be no different, 
underscoring our constant obligation as practitioners to 
use cautious skepticism rather than blind acceptance when 
considering any result.

Dietz and Pantanowitz are right to be cautious (1) 
because we have no full sense of how the machine is 
learning, often seeming to target alternative foci in an 
image compared to the human eye (5). However, looking 
at this from a different perspective, DL/AI is opening 
our eyes to different ways to assess tumour tissue and its 
microenvironment. Lee et al. (17) showed that machine 
learning focused on benign tissue surrounding prostate 
tumour which turned out to have prognostic value. Similar 
findings were described by Beck et al. (18), where stromal 
characteristics surrounding breast carcinoma tumour 
cells rather than the cells themselves carried a stronger 
association with survival. The machines have alerted us 
to important prognostic features within the tissue that 
historically have not seemed important when diagnostically 
analysing cancer tissue under the microscope. Perhaps this 
suggests that once the machines receive their high volume, 
high quality standardized training data, that our true 
pathological future will be the machines training us. 
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