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The ability to accurately distinguish benign from malignant 
pulmonary nodules based solely on imaging features is 
the holy grail of chest radiology. Incidentally discovered 
indeterminate pulmonary nodules are often subject to 
lengthy imaging follow-up to confirm benign behaviour 
(1,2). Clinico-radiological scoring systems can also be used 
to assess the likelihood that a given pulmonary nodule is 
malignant (3). These validated scoring systems, such as the 
Brock model, incorporate patient factors such as age, sex, 
lung cancer family history and smoking status, along with 
semantic radiological features such as nodule diameter and 
spiculation to determine a percentage risk of malignancy 
for a given nodule (4). Despite use of these validated 
scoring systems, and the addition of advanced imaging 
techniques such as 18 fluorodeoxyglucose positron emission 
tomography computed tomography (18F-FDG PET/CT) (5),  
it is often not possible to confidently distinguish benign 
from malignant aetiologies. This results in a large number 
of patients undergoing biopsy (CT guided, bronchoscopic 
guided or surgical wedge resection) for benign entities, 
estimated at approximately 26% of all nodule biopsies in 
the US (6). 

The use of machine learning technology in pulmonary 
nodule assessment represents an exciting development in 
chest radiology, and has the potential to provide a robust, 
non-invasive method of distinguishing benign from 
malignant nodules. The use of computer-aided diagnosis 
(CAD) algorithms for the detection of pulmonary nodules 
have been employed since the early 2000s (7). Recent 

advances in computer technology allows for a more complex 
assessment, enabling a computerized feature-based analysis 
of lung nodules that has the potential to aid discrimination 
of malignant from benign lesions (8). The novel, rapidly 
changing field of radiomics employs high-throughput 
computing to extract innumerable quantitative features 
from diagnostic medical images, converting digital medical 
images into mineable data (9). The process of radiomics 
begins with the acquisition of diagnostic quality medical 
images-in the example of pulmonary nodule assessment, 
this usually involves acquisition of a non-contrast CT 
thorax. From these images the region of interest (ROI), for 
example the nodule under assessment, is then segmented. 
Nodule segmentation can now often be performed 
automatically by post-processing software, with minimal 
operator contour edits (10). Once the lesion is segmented, 
quantitative features are extracted using high-throughput 
computing, generating a quantitative report which can then 
be compared with clinical and genomic data to discover 
potential relationships. The use of these quantitative 
features describing the shape and texture of a nodule are 
amongst the most promising radiomics techniques under 
investigation in the field of nodule assessment. Texture 
analysis techniques provides a quantitative description 
of the internal heterogeneity of a lesion by analysing 
the distribution and relationship of pixel grey levels in 
the image (11). Orooji et al. (12) explore the ability of a 
machine learning classifier employing a combination of 
radiomic shape and texture features to distinguish between 
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adenocarcinomas and granulomas. The authors chose to 
compare adenocarcinomas with granulomas, as these are the 
most common histological malignant and benign diagnoses 
encountered (13). 

This paper by Orooji et al. (12) is a retrospective study 
across two centres examining the ability of a machine 
learning classifier to discriminate between adenocarcinomas 
and granulomas using a combination of radiomic texture 
and shape features derived from non-contrast CT scans. 
After excluding patients with multiple nodules and CT 
scans with artefacts, 195 nodules from 195 subjects with 
histological confirmation from two sites were included. 
These were divided into two groups, a training set of 139 
nodules (70 adenocarcinomas and 69 granulomas) from 
one institution, and an independent test set of 56 nodules 
(34 adenocarcinomas and 22 granulomas) from a second 
institution. The nodules were manually segmented, and a 
total of 645 two-dimensional (2D) texture and 24 three-
dimensional (3D) shape features were extracted from the 
segmented nodule ROIs. The top computer-extracted 
discriminating radiomics features were then optimized 
on the training set to determine the likelihood of a 
nodule being an adenocarcinoma. The classifier was then 
independently validated on the test set, and compared 
with the interpretation of two human readers (one expert 
thoracic radiologist, one pulmonology fellow with training 
in CT thorax interpretation). The texture feature examined 
were extensive, including 1st order histogram features, 
Haralick features, Laws features, Laplacian pyramids, grey 
level features, Gabor features, gradient features and local 
binary patterns. Three-dimensional shape features were 
extracted in an attempt to quantify irregularities in shape 
that can result from internal tumour heterogeneity, and 
included measurements of nodule width, height, depth, 
area, perimeter, eccentricity, extend, compactness, radial 
distance, roughness, elongation, convexity, equivalent 
diameter and sphericity. A comprehensive description 
of these radiomics texture and shape features is beyond 
the scope of this article, but are described in detail in 
the manuscript text (12), and in excellent review articles 
by Lubner et al. (11), Gillies et al. (9) and Bashir et al. 
(14). The authors used a feature selection approach to 
identify the combined top 6 texture and shape features, 
which were then used to train three machine learning 
classifiers [linear discriminant analysis (LDA), quadratic 
discriminant analysis (QDA) and support vector machine 
(SVM)]. These machine learning classifiers were then 
applied to the validation set to predict the probability 

of a nodule being an adenocarcinoma, and the results 
compared with the two human readers. An attempt 
was made to determine the robustness of the radiomic 
features across the two sites, different CT scanners and 
CT slice thickness by calculating the preparation-induced 
instability (PI) score for the top shape and texture radiomic 
features identified in the testing and training cohorts. 
The PI number is a score between 0–1 which quantifies 
the stability of radiomic features across two separate 
cohorts, with a PI score closer to 0 implying stability of the  
feature (15). 

The top texture features identified across the three 
classifiers were the “skewness of Laws features (L5 × E5) 
and (L5 × R5)”, “skewness of gradient features” and “Gabor 
texture features”. The top performing shape features were 
“mean of extend”, “mean of convexity” and “variance 
of eccentricity”. Texture features outperformed shape 
features overall; for example, the SVM classifier AUC 
for the top performing texture feature “skewness of Law  
L5 × E5” was 81.9%±0.9% and for the top performing 
“mean of extend” shape feature was 69.3%±0.9%. The most 
stable and reproducible texture feature was “variance of 
sum variation”, and “mean of extend” was the most stable 
shape feature, as measured by the PI score. Tumour nodules 
showed more internal heterogeneity than granulomas, but 
there was no significant difference in nodule diameter or 
mean Hounsfield units (Hu). The best AUC on the training 
set was 92.9%±1.1% for a combination of 4 texture and  
2 shape features using the SVM machine-learning classifier, 
with a resulting AUC of 77.8% for the locked down SVM 
classifier on the independent test set. The AUCs for the expert 
thoracic radiologist and pulmonologist readers were 72.4% 
and 69.7% respectively. Interestingly, there was no significant 
difference found in the adenocarcinoma nodule prediction 
results between the locked down SVM classifier and the expert 
thoracic radiologist on the independent test set. 

The major limitation of this study was their decision 
to limit their analysis to one specific type of benign and 
malignant pathology. This potentially limits the immediate 
clinical applicability, as there are a myriad of potential 
histological diagnoses when faced with a pulmonary nodule. 
In addition, the human readers were not provided with any 
clinical details when making their assessment, which may 
have negatively impacted their performance. Although the 
authors did make use of datasets from separate institutions 
with different scanners and scan protocols, the question of 
how generalizable the results are across multiple different 
sites remains. 
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This paper is an interesting attempt to identify, and 
implement, the key shape and textural features derived 
from a computerized CT image analysis that enables a 
reliable, non-invasive method of distinguishing between 
adenocarcinomas and granulomas. Previous studies 
have examined the potential role of texture analysis in 
distinguishing benign from malignant nodules, but this 
is the first attempt to use a combination of texture and 
shape radiomic features to discern adenocarcinomas from 
granulomas. Dennie et al. (16) utilised Haralick-related 
textural features to distinguish between granulomas and 
primary lung cancers (any histological subtype) in 55 
nodules, reporting an AUC of 90.2%. This is similar to 
the AUC of 92.9% for the combination of textural and 
shape features in the training set, although they did not 
validate their findings on an independent test set. Kido 
et al. (17) examined the fractal dimension (FD) of nodule 
edges in 117 patients. FD is a mathematical measurement 
of an object’s intrinsic shape. They found that malignant 
lesions had a lower 3D FD than two benign pathologies 
(organizing pneumonia and tuberculoma). The same group 
also examined the FD of 70 subjects with lung tumours, 
finding that lepidic-type adenocarcinomas had higher 
FDs than non-lepidic adenocarcinomas and squamous cell  
tumours (18). McNitt-Gray et al. (19) used second-order 
grey-level co-occurrence matrix (GLCM) texture features 
to try and distinguish benign from malignant aetiologies 
in 32 nodules, finding that four features classified 94% 
(n=30) of nodules correctly, and that all nodules were 
correctly classified when 9 features were utilised. Suo 
et al. (20) examined textural heterogeneity differences 
between the edge and core of 48 nodules (24 malignant, 20 
inflammatory), finding a significant difference in malignant 
lesions. A combination of mean HU difference, entropy 
difference and lesion volume gave an AUC of 86.4% in 
detecting malignant nodules. Lee et al. (21) employed 
textural analysis in 77 part-solid nodules (PSNs) to try 
and distinguish transient from persistent PSNs, finding 
significant differences in mean HU attention, skewness and 
mean HU ratio between transient and persistent PSNs, 
although they did not have histological correlation for the 
persistent PSNs. 

The body of literature published to-date suggests that 
radiomics could play a role in helping radiologists and 
clinicians distinguish benign from malignant lung lesions 
non-invasively, but how and when this technique may 
come into routine clinical practice is as of yet unclear. 
The majority of radiomics studies published are single-

centre with small cohorts, which potentially limits their 
generalizability. The innumerable potentially evaluable 
radiomics features results in heterogeneity in the various 
shape and textural features examined across individual 
studies. This, in addition to the lack of validation cohorts 
in many studies, may also limit immediate clinical 
applicability. The methodology used by Orooji et al. (12)  
in combining an examination of textural and shape features 
in a cohort with histological confirmation, and their use 
of a separate validation test cohort, is a good attempt 
to develop a robust radiomics model for discriminating 
benign from malignant nodules. The ideal scenario is to 
develop an accurate, robust and reproducible classifier 
based on computer extracted shape and texture features 
that provides a decision support tool for thoracic 
radiologists when determining the risk that a given 
nodule is malignant. However, before any radiomics-
derived classifier can be employed into the routine 
clinical reporting workflow, further work will be needed 
to evaluate the discriminability of the features identified 
across the plethora of potential benign and malignant 
nodule aetiologies. Furthermore, a more rigorous 
assessment of the impact of the use of different scanners, 
scanning protocols, iodinated contrast, slice thickness and 
reconstruction algorithms on any proposed discriminatory 
radiomics features needs to be performed to determine 
generalizability (22,23). It would also be interesting to 
examine any incremental benefit in using a radiomics 
classifier in addition to one of the existing, validated 
clinico-radiological nodule malignancy predictor scoring  
systems (3), particularly given the lack of an overall 
significant difference between the locked down classifier 
and the expert thoracic radiologist in discriminating 
adenocarcinomas from granulomas in the test set (12).

In conclusion,  computer-extracted texture and 
shape features appear to be feasible and reproducible as 
discriminators of adenocarcinomas from granulomas. These 
classifiers are not yet ready for routine clinical practice, but 
following further validation in larger, multi-centre cohorts 
with a wider array of histologically confirmed benign and 
malignant pathologies, a classifier based on these computer-
extracted features has the potential to provide a valuable 
decision support tool aiding the non-invasive discrimination 
of malignant from benign pulmonary nodules.
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